If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y2 + -26y + 28 = 0 Reorder the terms: 28 + -26y + y2 = 0 Solving 28 + -26y + y2 = 0 Solving for variable 'y'. Begin completing the square. Move the constant term to the right: Add '-28' to each side of the equation. 28 + -26y + -28 + y2 = 0 + -28 Reorder the terms: 28 + -28 + -26y + y2 = 0 + -28 Combine like terms: 28 + -28 = 0 0 + -26y + y2 = 0 + -28 -26y + y2 = 0 + -28 Combine like terms: 0 + -28 = -28 -26y + y2 = -28 The y term is -26y. Take half its coefficient (-13). Square it (169) and add it to both sides. Add '169' to each side of the equation. -26y + 169 + y2 = -28 + 169 Reorder the terms: 169 + -26y + y2 = -28 + 169 Combine like terms: -28 + 169 = 141 169 + -26y + y2 = 141 Factor a perfect square on the left side: (y + -13)(y + -13) = 141 Calculate the square root of the right side: 11.874342087 Break this problem into two subproblems by setting (y + -13) equal to 11.874342087 and -11.874342087.Subproblem 1
y + -13 = 11.874342087 Simplifying y + -13 = 11.874342087 Reorder the terms: -13 + y = 11.874342087 Solving -13 + y = 11.874342087 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '13' to each side of the equation. -13 + 13 + y = 11.874342087 + 13 Combine like terms: -13 + 13 = 0 0 + y = 11.874342087 + 13 y = 11.874342087 + 13 Combine like terms: 11.874342087 + 13 = 24.874342087 y = 24.874342087 Simplifying y = 24.874342087Subproblem 2
y + -13 = -11.874342087 Simplifying y + -13 = -11.874342087 Reorder the terms: -13 + y = -11.874342087 Solving -13 + y = -11.874342087 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '13' to each side of the equation. -13 + 13 + y = -11.874342087 + 13 Combine like terms: -13 + 13 = 0 0 + y = -11.874342087 + 13 y = -11.874342087 + 13 Combine like terms: -11.874342087 + 13 = 1.125657913 y = 1.125657913 Simplifying y = 1.125657913Solution
The solution to the problem is based on the solutions from the subproblems. y = {24.874342087, 1.125657913}
| 6x^2+3x+15=0 | | 5a^2+4a-12=0 | | 5a^2(3a^4+3b+2)=0 | | -11x=13y | | 1=11+2x | | (2A+3)(1A+2)=0 | | x=50+4 | | 40=50+4 | | 1B^2+12B-24=10B | | 3(2v+3)=5-4(3-v) | | (2w^2-4w-8)-(5w^2+3w-2)=0 | | 2B^2-1C-10=5 | | 3x^2+12y^2=0 | | 40x=50+4 | | -y/2=3y/3-3 | | (2*x-3)*(2*x-3)+6*x=(4*x+1)(x-2)-17 | | (8u^3+2u^2+7)+(3u^3-7u+8)=0 | | 20x=8-4x | | (2*x-3)*(2*x-3)+6*x=(4*x+1)(x-2)-14 | | -3y+x=0 | | 1X^2=-1X | | X^3-27i=0 | | 1X^2-12=4X | | 20x=-4x+4 | | 3x^8-7x^8=0 | | 1X^2=3X+18 | | -2(7-3y)-6=-7 | | 3x^7-7x^8=0 | | 10x=8-4x | | 1X^2-2X=15 | | 6x^7+8x^7=0 | | 10=8-4x |